On Solving Discrete Optimization Problems with One Random Element Under General Regret Functions

نویسندگان

  • Diptesh Ghosh
  • Pranab K. Mandal
  • Shubhabrata Das
چکیده

In this paper we consider the class of stochastic discrete optimization problems in which the feasibility of a solution does not depend on the particular values the random elements in the problem take. Given a regret function, we introduce the concept of the risk associated with a solution, and define an optimal solution as one having the least possible risk. We show that for discrete optimization problems with one random element and with minsum objective functions a least risk solution for the stochastic problem can be obtained by solving a non-stochastic counterpart where the latter is constructed by replacing the random element of the former with a suitable parameter. We show that the above surrogate is the mean if the stochastic problem has only one symmetrically distributed random element. We obtain bounds for this parameter for certain classes of asymmetric distributions and study the limiting behavior of this parameter in details under two asymptotic frameworks. AMS Subject Classification: 90C31

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Solving Discrete Optimization Problems with Multiple Random Elements Under General Regret Functions

In this paper we attempt to find least risk solutions for stochastic discrete optimization problems (SDOP) with multiple random elements, where the feasibility of a solution does not depend on the particular values the random elements in the problem take. While the optimal solution, for a linear regret function, can be obtained by solving an auxiliary (nonstochastic) discrete optimization probl...

متن کامل

Distribution of the Optimal Value of a Stochastic Mixed Zero-One Linear Optimization Problem under Objective Uncertainty

This paper is motivated by the question to approximate the distribution of the completion time of a project network with random activity durations. In general, we consider the mixed zero-one linear optimization problem under objective uncertainty, and develop an approach to approximate the distribution of its optimal value when the random objective coefficients follow a multivariate normal dist...

متن کامل

Modified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables

This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...

متن کامل

Sample Average Approximation Method for Compound Stochastic Optimization Problems

The paper studies stochastic optimization (programming) problems with compound functions containing expectations and extreme values of other random functions as arguments. Compound functions arise in various applications. A typical example is a variance function of nonlinear outcomes. Other examples include stochastic minimax problems, econometric models with latent variables, multi-level and m...

متن کامل

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005